Кто открыл мейоз. Белковые механизмы мейоза

Мейомз (от др.-греч. меЯщуйт -- уменьшение) или редукционное деление клетки -- деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом -- образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).

При мейозе происходит не только редукция числа хромосом до гаплоидного их числа, но происходит чрезвычайно важный генетический процесс - обмен участками между гомологичными хромосомами, процесс, получивший название кроссинговера.

Существует несколько разновидностей мейоза. При зиготном (характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др.), для которых в жизненном цикле преобладает гаплоидная фаза, две клетки - гаметы сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делиться, и образуется четыре гаплоидные клетки, которые продолжают размножаться.

Споровый тип мейоза встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В данном случае в органах размножения растений, образовавшиеся после мейоза гаплоидные клетки еще несколько раз делятся. Другой тип мейоза, гаметный, происходит во время созревания гамет - предшественников зрелых половых клеток. Он встречается у многоклеточных животных, среди некоторых низших растений.

В случае гаметного мейоза характерно при развитии организма выделение клонов герминативных клеток, которые впоследствии будут дифференцироваться в половые клетки. И только клетки этих клонов будут при созревании подвергаться мейозу и превращаться в половые клетки. Следовательно, все клетки развивающихся многоклеточных животных организмов можно разделить на две группы: соматические - из которых будут образовываться клетки всех тканей и органов, и герминативные, которые дадут начало половым клеткам.

Такое выделение герминативных клеток (гоноцитов) обычно происходит на ранних стадиях эмбрионального развития. Так, детерминация гоноцитов у рачка циклопа происходит уже на первом делении зиготы: одна из двух клеток дает начало герминальным клеткам. У аскариды герминативные клетки или клетки "зародышевого пути" (А.Вейсман) выделяются на стадии 16 бластомеров, у дрозофилы - на стадии бластоцисты, у человека - первичные половые клетки (гонобласты) появляются на 3-ей неделе эмбрионального развития в стенке желточного мешка в каудальном отделе эмбриона.

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • · Профаза I -- профаза первого деления очень сложная и состоит из 5 стадий:
  • · Лептотена или лептонема -- упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  • · Зиготена или зигонема -- происходит конъюгация -- соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  • · Пахитена или пахинема -- (самая длительная стадия) -- в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер -- обмен участками между гомологичными хромосомами.
  • · Диплотена или диплонема -- происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.
  • · Диакинез -- ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  • · Метафаза I -- бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • · Анафаза I -- микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
  • · Телофаза I -- хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • · Профаза II -- происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
  • · Метафаза II -- унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • · Анафаза II -- униваленты делятся и хроматиды расходятся к полюсам.
  • · Телофаза II -- хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Мейоз (греч. meiosis – уменьшение, убывание) или редукционное деление. В результате мейоза происходит уменьшение числа хромосом, т.е. из диплоидного набора хромосом (2п) образуется гаплоидный (n).

Мейоз состоит из 2-х последовательных делений:
I деление называется редукционное или уменьшительное.
II деление называется эквационное или уравнительное, т.е. идет по типу митоза (значит число хромосом в материнской и дочерних клетках остается прежним).

Биологический смысл мейоза заключается в том, что из одной материнской клетки с диплоидным набором хромосом образуется четыре гаплоидные клетки, таким образом количество хромосом уменьшается в два раза, а количество ДНК в четыре раза. В результате такого деления образуются половые клетки (гаметы) у животных и споры у растений.

Фазы называются также как и в митозе, а перед началом мейоза клетка также проходит интерфазу.

Профаза I – самая продолжительная фаза и ее условно делят на 5 стадий:
1) Лептонема (лептотена) – или стадия тонких нитей. Идет спирализация хромосом, хромосома состоит из 2-х хроматид, на еще тонких нитях хроматид видны утолщения или сгустки хроматина, которые называются – хромомерами.
2) Зигонема (зиготена, греч. сливающиеся нити) - стадия парных нитей. На этой стадии попарно сближаются гомологичные хромосомы (одинаковые по форме величине), они притягиваются и прикладываются друг к другу по всей длине, т.е. коньюгируют в области хромомеров. Это похоже на замок «молния». Пару гомологичных хромосом называют биваленты. Число бивалентов равно гаплоидному набору хромосом.
3) Пахинема (пахитена , греч. толстая) – стадия толстых нитей. Идет дальнейшая спирализация хромосом. Затем каждая гомологичная хромосома расщепляется в продольном направлении и становится хорошо видно, что каждая хромосома состоит из двух хроматид такие структуры называют тетрадами, т.е. 4 хроматиды. В это время идет кроссинговер, т.е. обмен гомологичными участками хроматид.
4) Диплонема (диплотена) – стадия двойных нитей. Гомологичные хромосомы начинают отталкиваться, отходят друг от друга, но сохраняют взаимосвязь при помощи мостиков – хиазм, это места где произойдет кроссинговер. В каждом соединении хроматид (т.е. хиазме), осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.
5) Диакинез – стадия обособленных двойных нитей. На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышки разрушаются. Центриоли перемещаются к полюсам клетки и образуют нити веретена деления. Хромосомный набор профазы I составляет - 2n4c.
Таким образом, в профазу I происходит:
1. конъюгация гомологичных хромосом;
2. образование бивалентов или тетрад;
3. кроссинговер.

В зависимости от конъюгирования хроматид могут быть различные виды кроссинговера: 1 – правильный или неправильный; 2 – равный или неравный; 3 – цитологический или эффективный; 4 – единичный или множественный.

Метафаза I – спирализация хромосом достигает максимума. Биваленты выстраиваются вдоль экватора клетки, образуя метафазную пластинку. К центромерам гомологичных хромосом крепятся нити веретена деления. Биваленты оказываются соединенными с разными полюсами клетки.
Хромосомный набор метафазы I составляет - 2n4c.

Анафаза I – центромеры хромосом не делятся, фаза начинается с деления хиазм. К полюсам клетки расходятся целые хромосомы, а не хроматиды. В дочерние клетки попадает только по одной из пары гомологичных хромосом, т.е. идет их случайное перераспределение. На каждом полюсе, оказывается, по набору хромосом - 1п2с, а в целом хромосомный набор анафазы I составляет - 2n4c.

Телофаза I – по полюсам клетки находится целые хромосомы, состоящие из 2-х хроматид, но количество их стало в 2 раза меньше. У животных и некоторых растений хроматиды деспирализуются. Вокруг них на каждом полюсе формируется ядерная мембрана.
Затем идет цитокинез
. Хромосомный набор образовавшихся после первого деления клеток составляет - n2c.

Между I и II делениями нет S-периода и не идет репликация ДНК, т.к. хромосомы уже удвоены и состоят из сестринских хроматид, поэтому интерфазу II называют интеркинезом – т.е. происходит перемещение между двумя делениями.

Профаза II – очень короткая и идет без особых изменений, если в телофазу I не образуется ядерная оболочка, то сразу образуются нити веретена деления.

Метафаза II – хромосомы выстраиваются вдоль экватора. Нити веретена деления крепятся к центромерам хромосом.
Хромосомный набор метафазы II составляет - n2c.

Анафаза II – центромеры делятся и нити веретена деления разводят хроматиды к разным полюсам. Сестринские хроматиды называются дочерними хромосомами(или материнские хроматиды это и будут дочерние хромосомы).
Хромосомный набор анафазы II составляет - 2n2c.

Телофаза II – хромосомы деспирализуются, растягиваются и после этого плохо различимы. Образуются ядерные оболочки, ядрышки. Телофаза II завершается цитокинезом.
Хромосомный набор после телофазы II составляет – nc.

Схема мейотического деления

Мейоз (от греч.мейозис – уменьшение) – это особый тип деления эукариотических клеток, при котором после однократного удвоения ДНК клеткаделится дважды , и из одной диплоидной клетки образуются 4 гаплоидные. Состоит из 2-х последовательных делений (обозначаютсяIиII); каждое из них, подобно митозу, включает 4 фазы (профазу, метафазу, анафазу, телофазу) и цитокинез.

Фазы мейоза:

Профаза I , она сложная, делится на 5 стадий:

1. Лептонема (от греч.leptos – тонкий,nema – нить) – хромосомы спирализуются и становятся видны как тонкие нити. Каждая гомологичная хромосома уже реплицирована на 99,9% и состоит из двух сестринских хроматид, связанных между собой в районе центромеры. Содержание генетического материала –2 n 2 xp 4 c . Хромосомы с помощью белковых скоплений (прикрепительных дисков ) закреплены обоими концами на внутренней мембране ядерной оболочки. Ядерная оболочка сохраняется, ядрышко видно.

2. Зигонема (от греч.zygon – парный) – гомологичные диплоидные хромосомы устремляются друг к другу и соединяются сначала в области центромеры, а затем – по всей длине (конъюгация ). Образуютсябиваленты (от лат.bi – двойной,valens – сильный), илитетрады хроматид. Число бивалентов соответствует гаплоидному набору хромосом, содержание генетического материала можно записать как1 n 4 xp 8 c . Каждая хромосома в одном биваленте происходит либо от отца, либо от матери.Половые хромосомы располагаются около внутренней ядерной мембраны. Эта область называетсяполовым пузырьком.

Между гомологичными хромосомами в каждом биваленте образуются специализированные синаптонемальные комплексы (от греч.synapsis – связь, соединение), которые представляют собой белковые структуры. При большом увеличении в комплексе видны две параллельные белковые нити толщиной 10 нм каждая, соединенные тонкими поперечными полосами размерами около 7 нм, по обе стороны от них лежат хромосомы в виде множества петель.

В центре комплекса проходит осевой элемент толщиной 20 – 40 нм. Синаптонемальный комплекс сравнивают сверевочной лестницей , стороны которой образованы гомологичными хромосомами. Более точное сравнение –застежка типа «молния» .

К концу зигонемы каждая пара гомологичных хромосом связана между собой с помощью синаптонемальных комплексов. Лишь половые хромосомы XиYконъюгируют не полностью, т. к. они неполностью гомологичны.

3. В пахинеме (от греч.pahys – толстый) биваленты укорачиваются и утолщаются. Между хроматидами материнского и отцовского происхождения в нескольких местах возникают соединения –хиазмы (от греч.chiazma – перекрест). В области каждой хиазмы формируется комплекс белков, участвующих врекомбинации (d~ 90 нм), и происходит обмен соответствующих участков гомологичных хромосом – от отцовской к материнской и наоборот. Этот процесс называюткросссинговером (от англ.с rossing - over – перекресток). В каждом биваленте человека, например, кроссинговер происходит в двух – трех участках.

4. В диплонеме (от греч.diploos – двойной) синаптонемальные комплексы распадаются, и гомологичные хромосомы каждого бивалентаотодвигаются друг от друга , но связь между ними сохраняется в зонах хиазм.

5. Диакинез (от греч.diakinein – проходить через). В диакинезе завершается конденсация хромосом, они отделяются от ядерной оболочки, но гомологичные хромосомы продолжают еще оставаться связанными между собой концевыми участками, а сестринские хроматиды каждой хромосомы – центромерами. Биваленты приобретают причудливую формуколец, крестов, восьмерок и т. д. В это время разрушаются ядерная оболочка и ядрышки. Реплицированные центриоли направляются к полюсам, к центромерам хромосом прикрепляются нити веретена деления.

В целом профаза мейоза очень длительна. При развитии спермиев она может длиться несколько суток, а при развитии яйцеклеток – в течение многих лет.

Метафаза I напоминает аналогичную стадию митоза. Хромосомы устанавливаются в экваториальной плоскости, образуя метафазную пластинку. В отличие от митоза, микротрубочки веретена прикрепляются к центромере каждой хромосомы лишь с одной стороны (со стороны полюса), а центромеры гомологичных хромосом расположены по обеим сторонам экватора. Связь между хромосомами с помощью хиазм продолжает сохраняться.

В анафазе I хиазмы распадаются, гомологичные хромосомы отделяются друг от друга и расходятся к полюсам.Центромеры этих хромосом, однако, в отличие от анафазы митоза,не реплицируются , а значит, сестринские хроматиды не расходятся. Расхождение хромосом носитслучайный характер . Содержание генетической информации становится1 n 2 xp 4 c у каждого полюса клетки, а в целом в клетке –2(1 n 2 xp 4 c ) .

В телофазе I , как и при митозе, формируются ядерные оболочки и ядрышки, образуется и углубляетсяборозда деления. Затем происходитцитокинез . В отличие от митоза, деспирализации хромосом не происходит.

В результате мейоза Iобразуются 2 дочерние клетки, содержащие гаплоидный набор хромосом; при этом каждая хромосома имеет 2 генетически отличные (рекомбинантные) хроматиды:1 n 2 xp 4 c . Следовательно, в результате мейозаIпроисходитредукция (уменьшение вдвое) числа хромосом, откуда и название первого деления –редукционное .

После окончания мейоза Iнаступает короткий промежуток -интеркинез , в течение которого не происходит репликации ДНК и удвоения хроматид.

Профаза II недлительна, и конъюгации хромосом при этом не наступает.

В метафазе II хромосомы выстраиваются в плоскости экватора.

В анафазе II ДНК в области центромеры реплицируется, как это происходит и в анафазе митоза, хроматиды расходятся к полюсам.

Послетелофазы II ицитокинеза II образуются дочерние клетки с содержанием генетического материала в каждой –1 n 1 xp 2 c . В целом, второе деление называетсяэквационным (уравнительным).

Итак, в результате двух последовательных делений мейоза образуются 4 клетки, каждая из которых несет гаплоидный набор хромосом.

О живых организмах известно, что они дышат, питаются, размножаются и погибают, в этом состоит их биологическая функция. Но за счет чего это все происходит? За счет кирпичиков - клеток, которые тоже дышат, питаются, погибают и размножаются. Но как это происходит?

О строении клеток

Дом состоит из кирпичей, блоков или бревен. Так и организм можно разделить на элементарные единицы - клетки. Все разнообразие живых существ состоит именно из них, отличие лежит лишь в их количестве и видах. Из них состоят мышцы, костная ткань, кожа, все внутренние органы - настолько сильно они различаются в своем назначении. Но вне зависимости от того, какие функции выполняет та или иная клетка, все они устроены примерно одинаково. Прежде всего, у любого "кирпичика" есть оболочка и цитоплазма с расположенными в ней органоидами. Некоторые клетки не имеют ядра, их называют прокариотическими, однако все более или менее развитые организмы состоят из эукариотических, имеющих ядро, в котором хранится генетическая информация.

Органоиды, расположенные в цитоплазме, разнообразны и интересны, они выполняют важные функции. В клетках животного происхождения выделяют эндоплазматическую сеть, рибосомы, митохондрии, комплекс Гольджи, центриоли, лизосомы и двигательные элементы. С помощью них и происходят все процессы, которые обеспечивают функционирование организма.

Жизнедеятельность клеток

Как уже было сказано, все живое питается, дышит, размножается и умирает. Это утверждение справедливо как для цельных организмов, то есть людей, животных, растений и т. д., так и для клеток. Это удивительно, но каждый "кирпичик" обладает своей собственной жизнью. За счет своих органоидов он получает и перерабатывает питательные вещества, кислород, выводит все лишнее наружу. Сама цитоплазма и эндоплазматическая сеть выполняют транспортную функцию, митохондрии отвечают в том числе за дыхание, а также обеспечение энергией. Комплекс Гольджи занимается накоплением и выводом продуктов жизнедеятельности клетки. Остальные органоиды также участвуют в сложных процессах. И на определенном этапе своего начинает делиться, то есть происходит процесс размножения. Его стоит рассмотреть более подробно.

Процесс деления клеток

Размножение - одна из стадий развития живого организма. То же относится и к клеткам. На определенном этапе жизненного цикла они входят в состояние, когда становятся готовы к размножению. просто делятся надвое, удлиняясь, а потом образовывая перегородку. Этот процесс прост и практически полностью изучен на примере палочковидных бактерий.

С все обстоит несколько сложнее. Они размножаются тремя разными способами, которые называются амитоз, митоз и мейоз. Каждый из этих путей имеет свои особенности, он присущ определенному виду клеток. Амитоз

считается самым простым, его также называют прямым бинарным делением. При нем происходит удвоение молекулы ДНК. Однако веретено деления не образуется, так что этот способ является наиболее энергетически экономичным. Амитоз наблюдается у одноклеточных организмов, в то время как ткани многоклеточных размножаются с помощью других механизмов. Однако он иногда наблюдается и там, где снижена митотическая активность, например, в зрелых тканях.

Иногда прямое деление выделяют как разновидность митоза, однако некоторые ученые считают это отдельным механизмом. Протекание этого процесса даже в старых клетках происходит довольно редко. Далее будут рассмотрены мейоз и его фазы, процесс митоза, а также сходства и различия этих способов. По сравнению с простым делением они более сложны и совершенны. Особенно это касается редукционного деления, так что характеристика фаз мейоза будет наиболее подробной.

Важную роль в делении клетки имеют центриоли - специальные органоиды, как правило, располагающиеся рядом с комплексом Гольджи. Каждая такая структура состоит из 27 микротрубочек, сгруппированных по три. Вся конструкция имеет цилиндрическую форму. Центриоли непосредственно участвуют в формировании веретена деления клетки в процессе непрямого деления, о котором речь пойдет дальше.

Митоз

Продолжительность существования клеток различается. Некоторые живут пару дней, а какие-то можно отнести к долгожителям, поскольку их полная смена происходит очень редко. И практически все эти клетки размножаются с помощью митоза. У большинства из них между периодами деления проходит в среднем 10-24 часа. Сам митоз занимает небольшой период времени - у животных примерно 0,5-1

час, а у растений около 2-3. Этот механизм обеспечивает рост клеточной популяции и воспроизводство идентичных по своему генетическому наполнению единиц. Так соблюдается преемственность поколений на элементарном уровне. При этом число хромосом остается неизменным. Именно этот механизм является наиболее распространенным вариантом репродукции эукариотических клеток.

Значение этого вида деления велико - этот процесс помогает расти и регенерировать тканям, за счет чего происходит развитие всего организма. Кроме того, именно митоз лежит в основе бесполого размножения. И еще одна функция - перемещение клеток и замена уже отживших. Поэтому считать, что из-за того, что стадии мейоза сложнее, то и его роль гораздо выше, неправильно. Оба эти процесса выполняют разные функции и по-своему важны и незаменимы.

Митоз состоит из нескольких фаз, различающихся по своим морфологическим особенностям. Состояние, в котором клетка находится, будучи готовой к непрямому делению, называют интерфазой, а непосредственно процесс разделяется еще на 5 стадий, которые необходимо рассмотреть подробнее.

Фазы митоза

Находясь в интерфазе, клетка готовится к делению: происходит синтез ДНК и белков. Эта стадия подразделяется на еще несколько, в ходе которых происходит рост всей структуры и удвоение хромосом. В этом состоянии клетка пребывает до 90% всего жизненного цикла.

Остальные 10% занимает непосредственно деление, разделяющееся на 5 стадий. При митозе клеток растений также выделяется препрофаза, которая отсутствует во всех других случаях. Происходит образование новых структур, ядро перемещается к центру. Формируется препрофазная лента, размечающая предполагаемое место будущего деления.

Во все же остальных клетках процесс митоза проходит следующим образом:

Таблица 1

Наименование стадии Характеристика
Профаза Ядро увеличивается в размерах, хромосомы в нем спирализуются, становятся видимыми в микроскоп. В цитоплазме образуется веретено деления. Зачастую происходит распад ядрышка, однако это происходит не всегда. Содержание генетического материала в клетке остается неизменным.
Прометафаза Происходит распад ядерной мембраны. Хромосомы начинают активное, но беспорядочное движение. В конечном счете, все они приходят в плоскость метафазной пластинки. Этот этап длится до 20 минут.
Метафаза Хромосомы выстраиваются вдоль экваториальной плоскости веретена деления примерно на равном расстоянии от обоих полюсов. Численность микротрубочек, удерживающих всю конструкцию в стабильном состоянии, достигает максимума. Сестринские хроматиды отталкиваются друг от друга, сохраняя соединение лишь в центромере.
Анафаза Наиболее короткая стадия. Хроматиды разделяются и отталкиваются друг от друга в направлении ближайших полюсов. Этот процесс иногда выделяют отдельно и называют анафазой А. В дальнейшем происходит расхождение самих полюсов деления. В клетках некоторых простейших веретено деления при этом увеличивается в длину до 15 раз. И этот подэтап носит название анафаза В. Длительность и последовательность процессов на данной стадии вариабельна.
Телофаза После окончания расхождения к противоположным полюсам хроматиды останавливаются. Происходит деконденсация хромосом, то есть их увеличение в размерах. Начинается реконструкция ядерных оболочек будущих дочерних клеток. Микротрубочки веретена деления исчезают. Формируются ядра, возобновляется синтез РНК.

После завершения деления генетической информации происходит цитокинез или цитотомия. Под этим термином подразумевается образование тел дочерних клеток из тела материнской. При этом органоиды, как правило, делятся пополам, хотя возможны исключения, образуется перегородка. Цитокинез не выделяют в отдельную фазу, как правило, рассматривая его в рамках телофазы.

Итак, в самых интересных процессах задействованы хромосомы, которые несут генетическую информацию. Что же это такое и почему они так важны?

О хромосомах

Еще не имея ни малейшего понятия о генетике, люди знали, что многие качества потомства зависят от родителей. С развитием биологии стало очевидно, что информация о том или ином организме хранится в каждой клетке, и часть ее передается будущим поколениям.

В конце 19 века были открыты хромосомы - структуры, состоящие из длинной

молекулы ДНК. Это стало возможно с совершенствованием микроскопов, и даже сейчас рассмотреть их можно лишь в период деления. Чаще всего открытие приписывают немецкому ученому В. Флемингу, который не только упорядочил все то, что было изучено до него, но и внес свой вклад: он одним из первых исследовал клеточную структуру, мейоз и его фазы, а также ввел термин "митоз". Само понятие "хромосома" было предложено чуть позже другим ученым - немецким гистологом Г. Вальдейером.

Структура хромосом в момент, когда они четко видны, довольно проста - они представляют собой две хроматиды, соединенные посередине центромерой. Она является специфической последовательностью нуклеотидов и играет важную роль в процессе размножения клеток. В конечном итоге хромосома внешне в профазе и метафазе, когда ее можно лучше всего разглядеть, напоминается букву Х.

В 1900 году были открыты описывающие принципы передачи наследственных признаков. Тогда стало окончательно ясно, что хромосомы - это именно то, с помощью чего передается генетическая информация. В дальнейшем учеными был проведен ряд экспериментов, доказывающих это. И тогда предметом изучения стало и то влияние, котрое на них оказывает деление клетки.

Мейоз

В отличие от митоза этот механизм в итоге приводит к образованию двух клеток с набором хромосом в 2 раза меньше исходного. Таким образом процесс мейоза служит переходом от диплоидной фазы к гаплоидной, причем в первую очередь

речь идет о делении ядра, а уже во вторую - всей клетки. Восстановление же полного набора хромосом происходит в результате дальнейшего слияния гамет. В связи с уменьшением количества хромосом этот метод еще определяют как редукционное деление клетки.

Мейоз и его фазы изучали такие известные ученые, как В. Флеминг, Э. Страсбургрер, В. И. Беляев и другие. Исследование этого процесса в клетках как растений, так и животных, продолжается до сих пор - настолько он сложен. Изначально этот процесс считался вариантом митоза, однако практически сразу после открытия он все-таки был выделен как отдельный механизм. Характеристика мейоза и его теоретическое значение были впервые в достаточной степени описаны Августом Вайсманом еще в 1887 году. С тех пор изучение процесса редукционного деления сильно продвинулось, но сделанные выводы пока не были опровергнуты.

Мейоз не следует путать с гаметогенезом, хотя оба эти процесса тесно связаны. В образовании половых клеток участвуют оба механизма, однако между ними есть ряд серьезных отличий. Мейоз происходит в две стадии деления, каждая из которых состоит из 4 основных фаз, между ними есть короткий перерыв. Длительность всего процесса зависит от количества ДНК в ядре и структуры хромосомной организации. В целом он гораздо более продолжителен в сравнении с митозом.

Кстати, одна из основных причин значительного видового разнообразия - именно мейоз. Набор хромосом в результате редукционного деления разбивается надвое, так что появляются новые комбинации генов, в первую очередь потенциально повышающие приспособляемость и адаптивность организмов, в итоге получающих те или иные наборы признаков и качеств.

Фазы мейоза

Как уже было упомянуто, редукционное клеточное деление условно делят на две стадии. Каждая из этих стадий разделена еще на 4. И первая фаза мейоза - профаза I в свою очередь подразделяется еще на 5 отдельных этапов. Поскольку изучение этого процесса продолжается, в дальнейшем могут быть выделены и другие. Сейчас же различают следующие фазы мейоза:

Таблица 2

Наименование стадии Характеристика
Первое деление (редукционное)

Профаза I

лептотена По-другому этот этап называют стадией тонких нитей. Хромосомы выглядят в микроскопе как спутанный клубок. Иногда выделяют пролептотену, когда отдельные ниточки еще сложно разглядеть.
зиготена Стадия сливающихся нитей. Гомологичные, то есть сходные между собой по морфологии и в генетическом отношении, пары хромосом сливаются. В процессе слияния, то есть конъюгации, образуются биваленты, или тетрады. Так называют довольно устойчивые комплексы из пар хромосом.
пахитена Стадия толстых нитей. На этом этапе хромосомы спирализуются и завершается репликация ДНК, образуются хиазмы - точки контакта отдельных частей хромосом - хроматид. Происходит процесс кроссинговера. Хромосомы перекрещиваются и обмениваются некоторыми участками генетической информации.
диплотена Также называется стадией двойных нитей. Гомологичные хромосомы в бивалентах отталкиваются друг от друга и остаются связанными только в хиазмах.
диакинез На этой стадии биваленты расходятся на периферии ядра.
Метафаза I Оболочка ядра разрушается, формируется веретено деления. Биваленты перемещаются к центру клетки и выстраиваются вдоль экваториальной плоскости.
Анафаза I Биваленты распадаются, после чего каждая хромосома из пары перемещается к ближайшему полюсу клетки. Разделения на хроматиды не происходит.
Телофаза I Завершается процесс расхождения хромосом. Происходит формирование отдельных ядер дочерних клеток, каждое - с гаплоидным набором. Хромосомы деспирализуются, образуется ядерная оболочка. Иногда наблюдается цитокинез, то есть деление самого тела клетки.
Второе деление (эквационное)
Профаза II Происходит конденсация хромосом, клеточный центр делится. Разрушается ядерная оболочка. Образуется веретено деления, перпендикулярное первому.
Метафаза II В каждой из дочерних клеток хромосомы выстраиваются вдоль экватора. Каждая из них состоит из двух хроматид.
Анафаза II Каждая хромосома делится на хроматиды. Эти части расходятся к противоположным полюсам.
Телофаза II Полученные однохроматидные хромосомы деспирализуются. Образуется ядерная оболочка.

Итак, очевидно, что фазы деления мейоза гораздо сложнее, чем процесс митоза. Но, как уже было упомянуто, это не умаляет биологической роли непрямого деления, поскольку они выполняют разные функции.

Кстати, мейоз и его фазы наблюдаются и у некоторых простейших. Однако, как правило, он включает в себя лишь одно деление. Предполагается, что такая одноступенчатая форма позднее развилась в современную, двухступенчатую.

Отличия и сходства митоза и мейоза

На первый взгляд кажется, что различия двух этих процессов очевидны, ведь это совершенно разные механизмы. Однако при более глубоком анализе оказывается, что различия митоза и мейоза не так уж глобальны, в конце концов они приводят к образованию новых клеток.

Прежде всего стоит поговорить о том, что есть общего у этих механизмов. По сути совпадения всего два: в одинаковой последовательности фаз, а также в том, что

перед обоими видами деления происходит репликация ДНК. Хотя, что касается мейоза, до начала профазы I этот процесс не завершается полностью, заканчиваясь на одной из первых подстадий. А последовательность фаз хоть и аналогична, но, по сути, происходящие в них события совпадают не полностью. Так что сходства митоза и мейоза не так уж и многочисленны.

Различий же гораздо больше. Прежде всего, митоз происходит в в то время как мейоз тесно связан с образованием половых клеток и спорогенезом. В самих фазах процессы не полностью совпадают. Например, кроссинговер в митозе происходит во время интерфазы, и то не всегда. Во втором же случае на этот процесс приходится анафаза мейоза. Рекомбинация генов в непрямом делении обычно не осуществляется, а значит, он не играет никакой роли в эволюционном развитии организма и поддержании внутривидового разнообразия. Количество получившихся в результате митоза клеток - две, и они в генетическом смысле идентичны материнской и обладают диплоидным набором хромосом. Во время редукционного деления все иначе. Результат мейоза - 4 отличающихся от материнской. Кроме того, оба механизма значительно различаются по длительности, и это связано не только с различием в количестве ступеней деления, но и длительностью каждого из этапов. Например, первая профаза мейоза длится намного дольше, ведь в это время происходит конъюгация хромосом и кроссинговер. Именно поэтому ее дополнительно делят на несколько стадий.

В общем и целом сходства митоза и мейоза достаточно незначительны по сравнению с их отличиями друг от друга. Перепутать эти процессы практически невозможно. Поэтому сейчас даже несколько удивляет то, что редукционное деление раньше считалось разновидностью митоза.

Последствия мейоза

Как уже было упомянуто, после окончания процесса редукционного деления, вместо материнской клетки с диплоидным набором хромосом образуются четыре гаплоидных. И если говорить про различия митоза и мейоза - это самое значительное. Восстановление необходимого количества, если речь идет о половых клетках, происходит после оплодотворения. Таким образом, с каждым новым поколением не происходит удвоения количества хромосом.

Кроме того, во время мейоза происходит В процессе размножения это приводит к поддержанию внутривидового разнообразия. Так что тот факт, что даже родные братья и сестры порой сильно отличаются друг от друга - именно результат мейоза.

Кстати, стерильность некоторых гибридов в животном мире - тоже проблема редукционного деления. Дело в том, что хромосомы родителей, принадлежащих к разным видам, не могут вступить в конъюгацию, а значит, процесс образования полноценных жизнеспособных половых клеток невозможен. Таким образом, именно мейоз лежит в основе эволюционного развития животных, растений и других организмов.

Образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
  • Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  • Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  • Пахитена или пахинема - (самая длительная стадия) кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
  • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток .
  • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

Значение

  • У организмов, размножающихся половым путем, предотвращается удвоение числа хромосом в каждом поколении, так как при образовании половых клеток мейозом происходит редукция числа хромосом.
  • Мейоз создает возможность для возникновения новых комбинаций генов (комбинативная изменчивость), так как происходит образование генетически различных гамет.
  • Редукция числа хромосом приводит к образованию "чистых гамет", несущих только один аллель соответствующего локуса.
  • Расположение бивалентов экваториальной пластинки веретена деления в метафазе 1 и хромосом в метафазе 2 определяется случайным образом. Последующее расхождение хромосом в анафазе приводит к образованию новых комбинаций аллелей в гаметах. Независимое расхождение хромосом лежит в основе третьего закона Менделя .

Примечания

Литература

  • Бабынин Э. В. Молекулярный механизм гомологичной рекомбинации в мейозе: происхождение и биологическое значение . Цитология, 2007, 49, N 3, 182-193.
  • Александр Марков. На пути к разгадке тайны мейоза . По статье: Ю. Ф. Богданов. Эволюция мейоза одноклеточных и многоклеточных эукариот. Ароморфоз на клеточном уровне. Журнал общей биологии, Том 69, 2008. № 2, Март-Апрель. Стр. 102-117
  • «Variation and evolution of meiosis» - Ю. Ф. Богданов, 2003
  • Биология:Пособия для поступающих в вузы: В 2 т. Т.1.-Б63 2-е изд., испр. и доп.-М.:РИА «Новая волна»: Издатель Умеренков,2011.-500с.

Wikimedia Foundation . 2010 .

Синонимы :

Похожие публикации