О значении микроэлементов или чего не хватает растению? Необходимые растению элементы минерального питания К необходимым элементам для жизнедеятельности растений относится.

Роль элементов в жизни растений -

Азот

Азот - один из основных элементов, необходимых для растений. Он входит в состав всех белков (содержание его колеблется от 15 до 19%) нуклеиновых кислот, аминокислот, хлорофилла, ферментов, многих витаминов, липоидов и других органических соединений, образующихся в растениях. Общее содержание азота в растении составляет 0,2 - 5 % и более массы воздушно - сухого вещества.

В свободном состоянии азот является инертным газом, которого в атмосфере содержится 75,5 % ее массы. Однако в элементарной форме азот не может усваиваться растениями, за исключением бобовых, которые используют азотные соединения, вырабатываемые развивающимися на их корнях клубеньковыми бактериями, способными усваивать атмосферный азот и переводить его в доступную для высших растений форму.

Азот поглощается растениями только после соединения его с другими химическими элементами в форме аммония и нитратов - наиболее доступных форм азота в почве. Аммоний, являясь восстановленной формой азота, при поглощении растениями легко используется в синтезе аминокислот и белков. Синтез аминокислот и белков из восстановленных форм азота происходит быстрее и с меньшими затратами энергии, чем синтез из нитратов, для восстановления которых до аммиака растению необходимы затраты дополнительной энергии. Однако нитратная форма азота более безопасна для растений, чем аммиачная, так как высокие концентрации аммиака в тканях растений вызывают их отравление и гибель.

Аммиак накапливается в растении при нехватке углеводов, которые необходимы для синтеза аминокислот и белков. Дефицит углеводов в растениях наблюдается обычно в начальный период вегетации, когда ассимиляционная поверхность листьев не развилась еще настолько, чтобы удовлетворить потребность растений в углеводах. Поэтому аммиачный азот может быть токсичен для культур, семена которых бедны углеводами (сахарная свекла и др.). По мере развития ассимиляционной поверхности и синтеза углеводов эффективность аммиачного питания возрастает, и растения усваивают лучше аммиак, чем нитраты. В начальный период роста эти культуры должны обеспечиваться азотом в нитратной форме, а такие культуры, как картофель, клубни которого богаты углеводами, могут использовать азот в аммиачной форме.

При недостатке азота замедляется рост растений, ослабляется интенсивность кущения злаковых и цветения плодовых и ягодных культур, сокращается вегетационный период, уменьшается содержание белка и снижается урожай.

Фосфор

Фосфор участвует в обмене веществ, делении клеток, размножении, передаче наследственных свойств и в других сложнейших процессах, происходящих в растении. Он входит в состав сложных белков (нуклеопротеидов), нуклеиновых кислот, фосфатидов, ферментов, витаминов, фитина и других биологически активных веществ. Значительное количество фосфора содержится в растениях в минеральной и органической формах. Минеральные соединения фосфора находятся в виде ортофосфорной кислоты, которая используется растением прежде всего в процессах превращения углеводов. Эти процессы влияют на накопление сахара в сахарной свекле, крахмала в клубнях картофеля и т. д.

Особенно велика роль фосфора, входящего в состав органических соединений. Значительная часть его представлена в виде фитина - типичной запасной формы органического фосфора. Больше всего этого элемента содержится в репродуктивных органах и молодых тканях растений, где идут интенсивные процессы синтеза. Опытами с меченым (радиоактивным) фосфором было установлено, что в точках роста растения его в несколько раз больше, чем в листьях.

Фосфор может передвигаться из старых органов растения в молодые. Особенно необходим фосфор для молодых растений, так как способствует развитию корневой системы, повышает интенсивность кущения зерновых культур. Установлено, что увеличивая содержание растворимых углеводов в клеточном соке, фосфор усиливает зимостойкость озимых культур.

Как и азот, фосфор является одним из важных элементов питания растений. В самом начале роста растение испытывает повышенную потребность в фосфоре, которая покрывается за счет запасов этого элемента в семенах. На бедных по плодородию почвах у молодых растений после расхода фосфора из семян проявляются признаки фосфорного голодания. Поэтому на почвах, содержащих небольшое количество подвижного фосфора, рекомендуется одновременно с посевом проводить рядковое внесение гранулированного суперфосфата.

Фосфор в отличие от азота ускоряет развитие культур, стимулирует процессы оплодотворения, формирования и созревания плодов.

Основным источником фосфора для растений являются соли ортофосфорной кислоты, называемой обычно фосфорной. Корни растений поглощают фосфор в виде анионов этой кислоты. Наиболее доступными для растений являются водорастворимые однозамещенные соли ортофосфорной кислоты: Са (H 2 PO 4) 2 - H 2 O, КН 2 РO 4 NH 4 H 2 PO 4 NaH 2 PO 4 , Mg(H 2 PO 4) 2 .

Калий

Калий не входит в состав органических соединений растений. Однако он играет важнейшую физиологическую роль в углеводном и белковом обмене растений, активизирует использование азота в аммиачной форме, влияет на физическое состояние коллоидов клетки, повышает водоудерживающую способность протоплазмы, устойчивость растений к увяданию и преждевременному обезвоживанию и тем самым увеличивает сопротивляемость растений кратковременным засухам.

При недостатке калия (несмотря на достаточное количество углеводов и азота) в растениях подавляется передвижение углеводов, снижается интенсивность фотосинтеза, восстановления нитратов и синтеза белка.

Калий влияет на образование клеточных оболочек, повышает прочность стеблей злаков и их устойчивость к полеганию.

От калия заметно зависит качество урожая. Недостаток его приводит к щуплости семян, понижению их всхожести и жизненности; растения легко поражаются грибными и бактериальными заболеваниями. Калий улучшает форму и вкусовые качества картофеля, повышает содержание сахара в сахарной свекле, влияет не только на окраску и аромат земляники, яблок, персиков, винограда, но и на сочность апельсинов, улучшает качество зерна, листа табака, овощных культур, волокна хлопчатника, льна, конопли. Наибольшее количество калия требуется растениям в период их интенсивного роста.

Повышенная требовательность к калийному питанию отмечается у корнеплодов, овощных культур, подсолнечника, гречихи, табака.

Калий в растении находится преимущественно в клеточном соке в виде катионов, связанных органическими кислотами, и легко вымывается из растительных остатков. Для него характерно многократное использование (реутилизация). Он легко передвигается из старых тканей растения, где был уже использован, в молодые.

Недостаток калия, так же как и его избыток, отрицательно сказывается на количестве урожая и его качестве.

Магний

Магний входит в состав хлорофилла и непосредственно участвует в фотосинтезе. В хлорофилле содержится магния около 10 % от общего количества его в зеленых частях растений. С магнием также связано образование в листьях таких пигментов, как ксантофилл и каротин. Магний также входит в состав запасного вещества фитина, содержащегося в семенах растений и пектиновых веществ. Около 70 - 75 % магния в растениях находится в минеральной форме, в основном в виде ионов.

Ионы магния, адсорбционно связаны с коллоидами клеток и наряду с другими катионами поддерживают ионное равновесие в плазме; подобно ионам калия, они способствуют уплотнению плазмы, уменьшению ее набухаемости, а также участвуют как катализаторы в ряде биохимических реакций, происходящих в растении. Магний активизирует деятельность многих ферментов, участвующих в образовании и превращении углеводов, белков, органических кислот, жиров; влияет на передвижение и превращение фосфорных соединений, плодообразование и качество семян; ускоряет созревание семян зерновых культур; способствует повышению качества урожая, содержания в растениях жира и углеводов, морозоустойчивости цитрусовых, плодовых и озимых культур.

Наибольшее содержание магния в вегетативных органах растений отмечается в период цветения. После цветения в растении резко снижается количество хлорофилла, и происходит отток магния из листьев и стеблей в семена, где образуются фитин и фосфат магния. Следовательно, магний, подобно калию, может перемещаться в растении из одних органе в другие.

При высоких урожаях сельскохозяйственные культуры потребляют магния до 80 кг с 1 га. Наибольшее количество его поглощают картофель, кормовая и сахарная свекла, табак, бобовые травы.

Самой важной формой для питания растений является обменный магний, составляющий в зависимости от вида почвы 5 - 10 % общего содержания этого элемента в почве.

Кальций

Кальций участвует в углеводном и белковом обмене растений, образовании и росте хлоропластов. Подобно магнию и другим катионам, кальций поддерживает определенное физиологическое равновесие ионов в клетке, нейтрализует органические кислоты, влияет на вязкость и проницаемость протоплазмы. Кальций необходим для нормального питания растений аммиачным азотом, он затрудняет восстановление в растениях нитратов до аммиака. От кальция в большей степени зависит построение нормальных клеточных оболочек.

В отличие от азота, фосфора и калия, находящихся обычно в молодых тканях, кальций содержится в значительных количествах в старых тканях; при этом его больше в листьях и стеблях, чем в семенах. Так, в семенах гороха кальций составляет 0,9 % воздушно - сухого вещества, а в соломе - 1,82 %

Наибольшее количество кальция потребляют многолетние бобовые травы - около 120 кг СаО с 1 га.

Недостаток кальция в полевых условиях отмечается на очень кислых, особенно песчаных, почвах и солонцах, где поступление кальция в растения тормозится ионами водорода на кислых почвах и натрия на солонцах.

Сера

Сера входит в состав аминокислот цистина и метионина, а также глутатиона - вещества, содержащегося во всех клетках растений и играющего определенную роль в обмене веществ и в окислительно - восстановительных процессах, так как является переносчиком водорода. Сера - непременный компонент некоторых масел (горчичное, чесночное) и витаминов (тиамин, биотин), она влияет на образование хлорофилла, способствует усиленному развитию корней растений и клубеньковых бактерий, усваивающих атмосферный азот и живущих в симбиозе с бобовыми культурами. Часть серы находится в растениях в неорганической окисленной форме.

В среднем в растениях содержится около 0,2 - 0,4 % серы от сухого вещества, или около 10 % в золе. Больше всего серы поглощают культуры из семейства крестоцветных (капуста, горчица и др.). Сельскохозяйственные культуры потребляют следующее количество серы (кгга): зерновые и картофель - 10 - 15, сахарная свекла и бобовые - 20 - 30, капуста - 40 - 70.

Серное голодание чаще всего наблюдается на бедных органическим веществом супесчаных и песчаных почвах нечерноземной полосы.

Железо

Железо потребляется растениями в значительно меньших количествах (1 - 10 кг с 1 га), чем другие макроэлементы. Оно входит в состав ферментов, участвующих в создании хлорофилла, хотя в него этот элемент не входит. Железо участвует в окислительно - восстановительных процессах, протекающих в растениях, так как оно способно переходить из окисленной формы в закисную и обратно. Кроме того, без железа невозможен процесс дыхания растений, поскольку оно является составной частью дыхательных ферментов.

Недостаток железа ведет к распаду ростовых веществ (ауксинов), синтезируемых растениями. Листья становятся светло - желтыми. Железо не может, как калий и магний, передвигаться из старых тканей в молодые (т. е. повторно использоваться растением).

Железное голодание чаще всего проявляется на карбонатных и сильноизвесткованных почвах. Особенно чувствительны к недостатку железа плодовые культуры и виноград. При длительном железном голодании у них происходит отмирание верхушечных побегов.

Бор

Бор содержится в растениях в ничтожном количестве: 1 мг на 1 кг сухого вещества. Различные растения потребляют от 20 до 270 г бора с 1 га. Наименьшее содержание бора наблюдается в злаковых культурах. Несмотря на это бор оказывает большое влияние на синтез углеводов, их превращение и передвижение в растениях, формирование репродуктивных органов, оплодотворение, рост корней, окислительно - восстановительные процессы, белковый и нуклеиновый обмен, на синтез и передвижение стимуляторов роста. С наличием бора также связаны активность ферментов, осмотические процессы и гидратация плазменных коллоидов, засухо - и солеустойчивость растений, содержание в растениях витаминов - аскорбиновой кислоты, тиамина, рибофлавина. Поглощение растениями бора увеличивает потребление других питательных веществ. Этот элемент не способен передвигаться из старых тканей растений в молодые.

При недостатке бора замедляется рост растений, отмирают точки роста побегов и корней, не раскрываются бутоны, опадают цветки, распадаются клетки в молодых тканях, появляются трещины, органы растений чернеют и приобретают неправильную форму.

Недостаток бора чаще всего проявляется на почвах с нейтральной и щелочной реакцией, а также на известкованных почвах, так как кальций мешает поступлению бора в растение.

Молибден

Молибден поглощается растениями в меньших количествах, чем другие микроэлементы. На 1 кг сухого вещества растений приходится 0,1 - 1,3 мг молибдена. Наибольшее количество этого элемента содержится в семенах бобовых культур - до 18 мг на 1 кг сухого вещества. С 1 га растения выносят с урожаем 12 - 25 г молибдена.

В растениях молибден входит в состав ферментов, участвующих в восстановлении нитратов до аммиака. При недостатке молибдена в растениях накапливаются нитраты и нарушается азотный обмен. Молибден улучшает кальциевое питание растений. Благодаря способности изменять валентность (отдавая электрон, он становится шестивалентным, а присоединяя - пятивалентным) молибден участвует в окислительно - восстановительных процессах, происходящих в растении, а также в образовании хлорофилла и витаминов, в обмене фосфорных соединений и углеводов. Большое значение имеет молибден в фиксации молекулярного азота клубеньковыми бактериями.

При нехватке молибдена растения отстают в росте и снижают урожайность, листья приобретают бледную окраску (хлороз), в результате нарушения азотного обмена теряют тургор.

Молибденовое голодание чаще всего наблюдается на кислых почвах, имеющих рН менее 5,2. Известкование увеличивает подвижность молибдена в почве и потребление его растениями. Особенно чувствительны к недостатку этого элемента в почве бобовые культуры. Под влиянием молибденовых удобрений не только увеличивается урожай, но и улучшается качество продукции - повышается содержание сахара и витаминов в овощных культурах, белка в зернобобовых культурах, протеина в сене бобовых трав и т. д.

Избыток молибдена, как и его недостаток, сказывается на растениях отрицательно - листья теряют зеленую окраску, задерживается рост и снижается урожай растений.

Медь

Медь, как и другие микроэлементы, потребляется растениями в очень малых количествах. На 1 кг сухой массы растений приходится 2 - 12 мг меди.

Медь играет большую роль в окислительно - восстановительных процессах, обладая способностью переходить из одновалентной формы в двухвалентную и обратно. Она является компонентом ряда окислительных ферментов, повышает интенсивность дыхания, влияет на углеводный и белковый обмен растений. Под влиянием меди в растении увеличивается содержание хлорофилла, усиливается процесс фотосинтеза, повышается устойчивость растений к грибным и бактериальным болезням.

Недостаточная обеспеченность растений медью отрицательно сказывается на водоудерживающей и водопоглощающей способности растений. Чаще всего недостаток меди наблюдается на торфяно - болотных почвах и некоторых почвах легкого механического состава.

В то же время слишком высокое содержание в почве доступной для растений меди, как и других микроэлементов, отрицательно влияет на урожай, поскольку нарушается развитие корней и уменьшается поступление в растение железа и марганца.

Марганец

Марганец, как и медь, играет важную роль в окислительно - восстановительных реакциях, протекающих в растении; он входит в состав ферментов, с помощью которых происходят данные процессы. Марганец участвует в процессах фотосинтеза, дыхания, в углеводном и белковом обмене. Он ускоряет отток углеводов из листьев в корень.

Кроме того, марганец участвует в синтезе витамина С и других витаминов; он увеличивает содержание сахара в корнях сахарной свеклы, белков в зерновых культурах.

Марганцевое голодание чаще всего отмечается на карбонатных, торфяных и сильноизвесткованных почвах.

При недостатке данного элемента замедляется развитие корневой системы и рост растений, снижается урожайность. Животные, поедающие корма с низким содержанием марганца, страдают ослаблением сухожилий, у них слабо развивается костяк. В свою очередь, избыточное количество растворимого марганца, наблюдающееся на сильнокислых почвах, может отрицательно действовать на растения. Токсическое действие избытка марганца устраняют известкованием.

Цинк

Цинк входит в состав ряда ферментов, например, карбоангидразы, катализирующей расщепление угольной кислоты на воду и углекислый газ. Этот элемент принимает участие в происходящих в растении окислительно - восстановительных процессах, в обмене углеводов, липоидов, фосфора и серы, в синтезе аминокислот и хлорофилла. Роль цинка в окислительно - восстановительных реакциях меньше, чем роль железа и марганца, так как он не обладает переменной валентностью. Цинк влияет на процессы оплодотворения растений и развитие зародыша.

Недостаточная обеспеченность растений усвояемым цинком наблюдается на гравийных, песчаных, супесчаных и карбонатных почвах. Особенно страдают от недостатка цинка виноградники, цитрусовые и плодовые деревья в засушливых районах страны на щелочных почвах. При длительном цинковом голодании у плодовых деревьев наблюдается суховершинность - отмирание верхних ветвей. Из полевых культур наиболее острую потребность к данному элементу проявляют кукуруза, хлопчатник, соя и фасоль.

Вызываемое недостатком цинка нарушение процессов синтеза хлорофилла приводит к появлению на листьях хлоротичных пятен светло - зеленого, желтого и даже почти белого цвета.

Кобальт

Кроме всех вышеописанных микроэлементов, в растениях найдены также такие микроэлементы, роль которых в растениях изучена недостаточно (например, кобальт, йод и др.). Вместе с тем установлено, что они имеют большое значение в жизни человека и животных.

Так, кобальт входит в состав витамина В 12 , при недостатке которого нарушаются процессы обмена веществ, в частности, ослабляется синтез белков, гемоглобина и т. д.

Недостаточная обеспеченность кормов кобальтом при содержании его менее 0,07 мг на 1 кг сухой массы приводит к значительному снижению продуктивности животных, а при резком недостатке кобальта скот заболевает сухоткой.

Иод

Иод является составной частью гормона щитовидной железы - тироксина. При недостатке йода резко уменьшается продуктивность скота, нарушаются функции щитовидной железы, происходит ее увеличение (появление зоба). Наименьшее содержание йода наблюдается в подзолистых и серых лесных почвах; более обеспечены йодом черноземы и сероземы. В почвах легкого механического состава, бедных коллоидными частицами, йода меньше, чем в почвах глинистых.

Как показывает химический анализ, в растениях содержатся и такие элементы, как натрий, кремний, хлор, алюминий.

Натрий

Натрий составляет от 0,001 до 4% сухой массы растений. Из полевых культур наибольшее содержание этого элемента наблюдается в сахарной, столовой и кормовой свекле, турнепсе, кормовой моркови, люцерне, капусте, цикорие. С урожаем сахарной свеклы выносится около 170 кг натрия с 1 га, а кормовой - около 300 кг.

Кремний

Кремний содержится во всех растениях. Наибольшее количество кремния отмечено в злаковых культурах. Роль кремния в жизни растений не установлена. Он увеличивает поглощение растениями фосфора благодаря повышению растворимости почвенных фосфатов под действием кремнекислоты. Из всех зольных элементов больше всего в почве содержится кремния, и недостатка в нем растения не испытывают.

Хлор

Хлор в растениях содержится в больших количествах, чем фосфор и сера. Однако необходимость его для нормального роста растений не установлена. Хлор быстро поступает в растения, отрицательно влияя при этом на ряд физиологических процессов. Хлор снижает качество урожая, затрудняет поступление в растение анионов, в частности фосфатного.

Очень чувствительны к высокому содержанию в почве хлора цитрусовые культуры, табак, виноград, картофель, гречиха, люпин, сераделла, лен, смородина. Менее чувствительны к большому количеству хлора в почве злаковые и овощные культуры, свекла, травы.

Алюминий

Алюминий в растениях может содержаться в значительных количествах: на его долю в золе некоторых растений приходится до 70 %. Алюминий нарушает обмен веществ в растениях, затрудняет синтез Сахаров, белков, фосфатидов, нуклеопротеидов и других веществ, что отрицательно сказывается на урожайности растений. Наиболее чувствительными культурами к наличию подвижного алюминия в почве (1 - 2 мг на 100 г почвы) являются сахарная свекла, люцерна, клевер красный, озимая и яровая вики, озимая пшеница, ячмень, горчица, капуста, морковь.

Помимо упомянутых макро - и микроэлементов в растениях содержится ряд элементов в ничтожно малых количествах (от 108 до 10 - 12 %), называемых ультрамикроэлементами. К ним относятся цезий, кадмий, селен, серебро, рубидий и др. Роль этих элементов в растениях не изучена.
читайте так-же

Растения способны поглощать из окружающей среды практически все элементы периодической системы Д.И. Менделеева. Причем многие рассеянные в земной коре элементы накапливаются в растениях в значительных количествах.

Питательными веществами называются вещества, необходимые для жизни организма. Элемент считается необходимым, если его отсутствие не позволяет растению завершить свой жизненный цикл; недостаток элемента вызывает специфические нарушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредственно участвует в процессах превращения веществ и энергии, а не действует на растение косвенно.

Необходимость элементов можно установить только при выращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллированную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготовления и хранения растворов.

Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам (кроме 45 % углерода, 6,5 % водорода и 42 % кислорода, усвояемых в процессе воздушного питания) относятся следующие:

макроэлементы‚ содержание которых колеблется от десятков до сотых долей процента: азот‚ фосфор‚ сера‚ калий‚ кальций‚ магний;

микроэлементы, содержание которых колеблется от тысячных до стотысячных долей процента: железо‚ марганец‚ медь‚ цинк‚ бор‚ молибден.

Имеются еще и такие элементы, которые усиливают рост лишь определенных групп растений. Для роста некоторых растений засоленных почв (галофитов) оказывается полезным натрий. Необходимость натрия проявляется у растений С 4 и САМ. У этих растений показана необходимость натрия для регенерации ФЕП при карбоксилировании. Недостаток натрия у этих растений приводит к хлорозу и некрозам, а также тормозит развитие цветка. В натрии нуждаются и многие С 3 -растения. Показано, что этот элемент улучшает рост растяжением и выполняет осморегулирующую функцию, подобно калию. Благоприятное влияние оказывает натрий на рост сахарной свеклы.

Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO 2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.

Показана необходимость ванадия для Scenedesmus (зеленая одноклеточная водоросль), причем это очень специфическая потребность, так как даже для роста хлореллы ванадий не нужен.

Конец работы -

Эта тема принадлежит разделу:

Лекции по физиологии растений

Московский государственный областной университет.. д а климачев.. лекции по физиологии растений Москва климачев д а..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МОСКВА – 2006
Печатается по решению кафедры ботаники с основами сельского хозяйства. Климачев Д.А. Лекции по физиологии растений. М.: Изд-во МГОУ‚ 2006. – 282 с.

И основные направления исследований
В биосфере главенствующее положение занимает растительный мир-основа жизни на нашей планете. Растение обладает уникальным свойством-способностью накапливать энергии» света в органических веществах

Природа и функции основных химических компонентов растительной клетки
Земная кора и атмосфера содержит более ста химических элементов. Из всех этих элементов лишь ограниченное количество было отобрано в ходе эволюции для форми­рования сложного, высокоорганизованного

Элементарный состав растений
Азот - входит в состав белков, нуклеиновых кислот, фосфолипидов, порфиринов‚ цитохромов, коферментов (НАД, НАДФ). Поступает в растения в виде NО3-, NО2

Углеводы
Углеводы - сложные органические соединения, молекулы которых построены из атомов трех химических элементов: углерода, кислорода, водорода. Углеводы - основ­ной источник энергии для живых систем. Кр

Растительные пигменты
Пигменты - высокомолекулярные природные окрашенные соединения. Из не­скольких сотен пигментов, существующих в природе, важнейшими с биологической точки зрения являются металлопорфириновые и флавино

Фитогормоны
Известно, что жизнь животных контролируется нервной системой и гормонами, но далеко не все знают, что жизнь растений тоже контролируется гормонами, ко­торые называют фитогормонами. Они регулируют ж

Фитоалексины
Фитоалексины - это низкомолекулярные антибиотические вещества высших рас­тений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром дос­тижении антимикробных концентраций они мо

Клеточная оболочка
Клеточная оболочка придает клеткам и тканям растений механическую прочность, защищает протоплазматическую мембрану от разрушения под влиянием гидростатиче­ского давления, развиваемого внутри клетки

Вакуоль
Вакуоль - полость, заполненная клеточ­ным соком и окруженная мембраной (тонопластом). В молодой клетке обычно имеется не­сколько мелких вакуолей (провакуолей). В про­цессе роста клетки образуется о

Пластиды
Различают три вида пластид: хлоропласта - зеленые, хромопласты - оранжевые, лейкопласты - бесцветные. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно со­ста

Органы, ткани и функциональные системы высших растений
Главная особенность живых организмов заключается в том‚ что они представляют собой открытые системы‚ которые обмениваются с окружающей средой энергией‚ веществом и и

Регуляция активности ферментов
Изостерическая регуляция активности ферментов осуществляется на уровне их каталитических центров. Реакционная способность и направленность работы каталитического центра прежде всего зависят от коли

Генетическая система регуляции
Генетическая регуляция включает в себя регуляцию на уровне репликации‚ транскрипции, процессинга и трансляции. Молекулярные механизмы регуляции здесь те же (рН‚ ноны, модификация молекул, белки-рег

Мембранная регуляция
Мембранная регуляция осуществляется благодаря сдвигам в мембранном транспорте, связыванию или освобождению ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все фун

Трофическая регуляция
Взаимодействие с помощью питательных веществ - наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов‚ о

Электрофизиологическая регуляция
Растительные организмы в отличие от животных не имеют нервной системы. Тем не менее, электрофизиологические взаимодействия клеток‚ тканей и органов играют существенную роль в координации функционал

Ауксины
Одни из первых экспериментов по регуляции роста у растений были выполнены Чарльзом Дарвином и его сыном Фрэнсисом и изложены в работе «Сила движения у растений»‚ опубликованной в 1881 г. Дарвины си

Цитокинины
Вещества, необходимые для индукции деления растительных клеток, получили название цитокининов. Впервые в чистом виде фактор клеточного деления был выделен из автоклавированного препарата ДНК спермы

Гиббереллины
Японский исследователь Е.Куросава в 1926 г. установил, что культуральная жидкость фитопатогенного гриба Gibberella fujikuroi содержит химическое вещество, способствующее сильному вытягиванию стебле

Абсцизины
В 1961 г. В.Лью и Х.Карнс из сухих зрелых коробочек хлопчатника выделили в кристаллическом виде вещество, ускоряющее опадение листьев, и назвали его абсцизином (от англ. abscission - отделение, опа

Брассиностероиды
Впервые в пыльце рапса и ольхи были обнаружены вещества, обладающие регулирующей рост активностью и названные брассинами. В 1979 г. было выделено активное начало (брассинолид) и определено его хими

Термодинамические основы водного обмена растений
Введение в физиологию растений понятий термодинамики дало возможность математически описать и объяснить причины, вызывающие как водообмен клеток, так и транспорт воды в системе почва - растение - а

Поглощение и передвижение воды
Источником воды для растений является почва. Количество доступной для растения воды определяется ее состоянием в почве. Формы почвенной влаги: 1. Гравитационная вода – заполняет п

Транспирация
В основе расходования воды растительным организмом лежит физический процесс испарения – переход воды из жидкого состояния в парообразное‚ происходящий в результате соприкосновения органов растения

Физиология устьичных движений
Степень раскрытия устьиц зависит от интенсивности света, оводненности тканей листа, концентрации СО2 в межклетниках, температуры воздуха и других факторов. В зависимости от фактора, запу

Пути снижения интенсивности транспирации
Перспективным способом снижения уровня транспирации является применение антитранспирантов. По механизму действия их можно разделить на две группы: вещества‚ которые вызывают закрывание устьиц; веще

История фотосинтеза
В старые времена врач обя­зан был знать ботанику, ведь многие лекарственные средст­ва готовились из растений. Неудивительно, что лекари не­редко выращивали растения, проводили с ними различные опыт

Лист как орган фотосинтеза
В процессе эволюции растений сформировался специализированный орган фотосинтеза – лист. Приспособление его к фотосинтезу шло в двух направлениях: возможно более полное поглощение и запасание лучист

Хлоропласты и фотосинтетические пигменты
Лист растения - орган, обеспечивающий условия для проте­кания фотосинтетического процесса. Функционально же фото­синтез приурочен к специализированным органеллам - хлоропластам. Хлоропласты высших

Хлорофиллы
В настоящее время известно несколько различных форм хлорофилла, которые обозначают латинскими буквами. Хлоропласты высших растений содержат хлорофилл а и хлорофилл b. Они были идентифицированы русс

Каротиноиды
Каротиноиды - жирорастворимые пигменты желтого, оран­жевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветков, плодов, кор­неплодов). В зеленых л

Организация и функционирование пигментных систем
Пигменты хлоропластов объединены в функциональные ком­плексы - пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с

Циклическое и нециклическое фотосинтетическое фосфорилирование
Фотосинтетическое фосфорилирование, т. е. образование АТФ в хлоропластах в ходе реакций, активируемых светом, может осуществляться циклическим и нециклическим путями. Циклическое фотофосфо

Темновая фаза фотосинтеза
Продукты световой фазы фотосинтеза АТФ и НАДФ. Н2 ис­пользуются в темновой фазе для восстановления СО2 до уровня углеводов. Реакции восстановления происходят насто

С4-путь фотосинтеза
Путь усвоения СО2, установленный М. Кальвиным, является основным. Но существует большая группа растений, включаю­щая более 500 видов покрытосеменных, у которых первичными продуктами фикс

САМ-метаболизм
Цикл Хетча и Слэка обнаружен также у растений-суккулентов (из родов Crassula, Bryophyllum и др.). Но если у С4-растений кооперация достигнута за счет пространственного разделения двух ци

Фотодыхание
Фотодыхание - это индуцированное светом поглощение кис­лорода и выделение СО2, которое наблюдается только в расти­тельных клетках, содержащих хлоропласты. Химизм этого про­цесса значител

Сапротрофы
В настоящее время грибы относят к самостоятельному цар­ству, однако многие стороны физиологии грибов близки к фи­зиологии растений. По-видимому, сходные механизмы лежат и в основе их гетеротрофного

Насекомоядные растения
В настоящее время известно свыше 400 видов покрытосе­менных растений, которые ловят мелких насекомых и другие ор­ганизмы, переваривают свою добычу и используют продукты ее разложения как дополнител

Гликолиз
Гликолиз - это процесс генерации энергии в клетке, происхо­дящий без поглощения О2 и выделения СО2. Поэтому его ско­рость трудно измерить. Основной функцией гликолиза наряду с

Электрон-транспортная цепь
В рассмотренных ре­акциях цикла Кребса и при гликолизе молекулярный кислород не участвует. Потребность в кислороде возникает при окислении восстановленных переносчиков НАДН2 и ФАДН2

Окислительное фосфорилирование
Главной особенностью внут­ренней мембраны митохондрии является присутствие в ней бел­ков - переносчиков электронов. Эта мембрана непроницаема для ионов водорода, поэтому перенос последних через мем

Пентозофосфатное расщепление глюкозы
Пентозофосфатный цикл‚ или гексозомонофосфатный шунт‚ часто называют апотомическим окислением‚ в отличие от гликолитического цикла‚ называемого дихотомическим (распад гексозы на две триозы). Особен

Жиры и белки как дыхательный субстрат
Запасные жиры расходуются на дыхание проростков‚ развивающихся из семян‚ богатых жирами. Использование жиров начинается с их гидролитического расщепления липазой на глицерин и жирные кислоты‚ что п

Признаки голодания растений
Во многих случаях при недостатке элементов минерального питания у растений появляются характерные симптомы. В ряде случаев эти признаки голодания могут помочь установить функции данного элемента, а

Антагонизм ионов
Для нормальной жизнедеятельности как растительных, так и животных организмов в окружающей их среде должно быть определенное соотношение различных катионов. Чистые растворы солей одного какого-либо

Поглощение минеральных веществ
Корневая система растений поглощает из почвы как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Многочисленные исследования показал

Ионный транспорт в растении
В зависимости от уровня организации процесса различают три типа транспорта веществ в растении: внутриклеточный, ближний (внутри органа) и дальний (между органами). Внутриклеточный

Радиальное перемещение ионов в корне
Путем обменных процессов и диффузии ионы поступают в клеточные стенки ризодермы, а затем через коровую паренхиму направляются к проводящим пучкам. Вплоть до внутреннего слоя коры эндодермы возможно

Восходящий транспорт ионов в растении
Восходящий ток ионов осуществляется преимущественно по сосудам ксилемы, которые лишены живого содержимого и являются составной частью апопласта растения. Механизм ксилемного транспорта - массовый т

Поглощение ионов клетками листа
На долю проводящей системы приходится около 1/4 объема ткани листа. Суммарная длина разветвлений проводящих пучков в 1 см листовой пластинки достигает 1 м. Такая насыщенность тканей листа проводяще

Отток ионов из листьев
Почти все элементы, за исключением кальция и бора, могут оттекать из листьев, достигших зрелости и начинающих стареть. Среди катионов во флоэмных экссудатах доминирующее место принадлежит калию, на

Азотное питание растений
Основными усвояемыми формами азота для высших растений являются ионы аммония и нитрата. Наиболее полно вопрос об использовании растениями нитратного и аммиачного азота разработан академиком Д. Н. П

Ассимиляция нитратного азота
Азот входит в состав органических соединений только в восстановленной форме. Поэтому включение нитратов в обмен веществ начинается с их восстановления, которое может осуществляться и в корнях, и в

Ассимиляция аммиака
Аммиак, образовавшийся при восстановлении нитратов или молекулярного азота, а также поступивший в растение при аммонийном питании, далее усваивается в результате восстановительного аминирования кет

Накопление нитратов в растениях
Темпы поглощения нитратного азота часто могут превышать скорость его метаболизации. Связано это с тем, что многовековая эволюция растений шла в условиях недостатка азота и вырабатывались системы не

Клеточные основы роста и развития
Основой роста тканей, органов и всего растения являются образование и рост клеток меристематической ткани. Различают апикальную, латеральную и интеркалярную (вставочную) меристемы. Апикальная мерис

Закон большого периода роста
Скорость роста (линейного, массы) в онтогенезе клетки, ткани, любого органа и растения в целом непостоянна и может быть выражена сигмовидной кривой (рис. 26). Впервые эта закономерность роста была

Гормональная регуляция роста и развития растений
Многокомпонентная гормональная система участвует в управлении ростовыми и формообразовательными процессами растений, в реализации генетической программы роста и развития. В онтогенезе в отдельных ч

Влияние фитогормонов на рост и морфогенез растений
Прорастание семян. В набухающем семени центром образования или высвобождения гиббереллинов, цитокининов и ауксинов из связанного (конъюгированного) состояния является зародыш. Из з

Использование фитогормонов и физиологически активных веществ
Изучение роли отдельных групп фитогормонов в регуляции роста и развития растений определило возможность использования этих соединений, их синтетических аналогов и других физиологически активных вещ

Физиология покоя семян
Покой семян относится к завершающей фазе эмбрионального периода онтогенеза. Основным биологическим процессом, наблюдаемым при органическом покое семян, является их физиологическое дозревание‚ вслед

Процессы, протекающие при прорастании семян
При прорастании семян выделяют следующие фазы. Поглощение воды - сухие семена, находящиеся в состоянии покоя, поглощают воду из воздуха или какого-либо субстрата до наступления критической

Покой растений
Рост растений не является непрерывным процессом. У большинства растений время от времени наступают периоды резкого замедления или даже почти полной приостановки ростовых процессов – периоды покоя.

Физиология старения растений
Этап старения (старости и отмирания) - это период от полного прекращения плодоношения до естественной смерти растения. Старение - это период закономерного ослабления процессов жизнедеятельности, из

Осенняя окраска листьев и листопад
Осенью лиственные леса и сады меняют цвет листьев. На место монотонной летней окраски выступает большое разнообразие ярких тонов. Листья грабов, кленов и берез становятся светло-желтыми, д

Влияние микроорганизмов на рост растений
Многие почвенные микроорганизмы обладают способностью стимулировать рост растений. Полезные бактерии могут оказывать свое влияние непосредственно‚ поставляя растениям фиксированный азот‚ хелатирова

Движения растений
Растения в отличие от животных прикреплены к месту своего обитания и не могут перемещаться. Однако и для них характерно движение. Движение растений - это изменение положения органов растений в прос

Фототропизмы
Среди факторов, вызывающих проявление тропизмов, свет был первым, на действие которого человек обратил внимание. В древних литературных источниках были описаны изменения положения органов растений

Геотропизмы
Наряду со светом на растения оказывает влияние сила тяжести, определяющая положение растений в пространстве. Присущую всем растениям способность воспринимать земное притяжение и реагировать на него

Холодостойкость растений
Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько в

Морозоустойчивость растений
Морозоустойчивость - способность растений переносить температуру ниже 0оС, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низки

Зимостойкость растений
Непосредственное действие мороза на клетки - не единственная опасность, угрожающая многолетним травянистым и древесным культурам, озимым растениям в течение зимы. Помимо прямого действия мороза рас

Влияние на растения избытка влаги в почве
Постоянное или временное переувлажнение характерно для многих районов земного шара. Оно нередко наблюдается также при орошении, особенно проводимом методом затопления. Избыток воды в почве может бы

Засухоустойчивость растений
Обычным явлением для многих регионов России и государств СНГ стали засухи. Засуха - это длительный бездождливый период, сопровождаемый снижением относительной влажности воздуха, влажности почвы и п

Влияние на растения недостатка влаги
Недостаток воды в тканях растений возникает в результате превышения ее расхода на транспирацию перед поступлением из почвы. Это часто наблюдается в жаркую солнечную погоду к середине дня. При этом

Физиологические особенности засухоустойчивости
Способность растений переносить недостаточное влагообеспечение является комплексным свойством. Она определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегани

Жароустойчивость растений
Жароустойчивость (жаровыносливость) - способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют две группы

Солеустойчивость растений
За последние 50 лет уровень Мирового океана поднялся на 10 см. Эта тенденция, по предсказаниям ученых, будет продолжаться и дальше. Следствием этого является возрастающий дефицит пресной воды, а до

Основные термины и понятия
Вектор – самореплицирующаяся молекула ДНК (например‚ бактериальная плазмида)‚ используемая в генной инженерии для переноса генов. vir-гены

Из Agrobacterium tumefaciens
Почвенная бактерия Agrobacterium tumefaciens - фитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла - о

Векторные системы на основе Тi-плазмид
Самый простой способ использования природной способности Тi-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК

Физические методы переноса генов в растительные клетки
Системы переноса генов с помощью Agrobacterium tumefaciens эффективно работают только в случае некоторых видов растений. В частности, однодольные растения, включая основные зерновые культуры (рис,

Бомбардировка микрочастицами
Бомбардировка микрочастицами, или биолистика, - наиболее многообещающий метод введения ДНК в растительные клетки. Золотые или вольфрамовые сферические частицы диаметром 0,4-1,2 мкм покрывают ДНК, о

Вирусам и гербицидам
Растения, устойчивые к насекомым-вредителям Если бы хлебные злаки можно было изменять методами генной инженерии так, чтобы они продуцировали функциональные инсектициды, то мы получили бы к

Воздействиям и старению
В отличие от большинства животных, растения физически не могут защитить себя от неблагоприятных воздействий со стороны окружающей среды: высокой освещенности, ультрафиолетового облучения, высоких т

Изменение окраски цветков
Цветоводы все время стараются создавать растения, цветки которых имеют более привлекательный внешний вид и лучше сохраняются после того, как их срежут. С помощью традиционных методов скрещивания за

Изменение пищевой ценности растений
За многие годы агрономы и селекционеры достигли больших успехов в улучшении качества и повышении урожайности самых разных сельскохозяйственных культур. Однако традиционные методы выведения новых со

Растения как биореакторы
Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и хим

Растения можно сравнить с живыми организмами. Они также питаются, растут и размножаются. Под питанием растений садоводы подразумевают всасывание корневищем минеральных и органических веществ, которые в дальнейшем усваиваются либо перерабатываются растением в иные химические элементы.

Самый простой способ получить красивую лужайку перед домом

Вы, конечно же, видели идеальный газон в кино, на аллее, а возможно, и на соседской лужайке. Те, кто хоть раз пытался вырастить зеленую площадку у себя на участке, без сомнений скажут, что это огромный труд. Газон требует тщательной посадки, ухода, удобрения, полива. Однако так думают только неопытные садоводы, профессионалы давно знают про инновационное средство - жидкий газон AquaGrazz .

Для того чтобы корневая система могла всасывать нужное количество питательных веществ, необходима совокупность факторов. Такими стали: температура, кислотность почвы, концентрация и состав минералов, находящихся в грунте.

Исследования доказали, что помимо азота и кислорода для роста растения просто необходим полный комплекс элементов, иначе развитие будет медленным и неполноценным. Наиболее важными являются:

  • азот;
  • калий;
  • железо;
  • фосфор;
  • магний.

Виды питательных элементов

Практически каждый химический элемент может находится в различной форме, от которой будут зависеть его концентрация и способность к усваиванию растениями. Исходя из этого, элементы подразделяются на 3 группы:

  • ультрамикроэлементы. Используются для питания растений в особо малых количествах, но пренебрегать подобной подкормкой не стоит;
  • микроэлементы. Потребляются растениями в малом количестве;
  • макроэлементы. Растения требуют их в большом количестве, потому их внесение должно иметь глобальный характер.

Для оптимального развития растение должно получать весь комплекс минеральных веществ. При этом каждый элемент должен иметь свою концентрацию и нужную форму. Иначе растение его не впитает. Недостаточное минеральное питание растений проявляется признаками голодания. Опытный человек может сразу определить, чего именно не хватает растению и исправить ситуацию путем внесения необходимых элементов.


Аналогично этому, переизбыток элементов отразится на внешнем виде растения, но с решением такой проблемы могут возникнуть трудности. Даже малый переизбыток бора и магния способен затормозить процессы роста растения. Таким органом является корневище, именно оно, находясь на глубине, наиболее подвержено влиянию от передозировок химическими элементами.

Недостаток минеральных веществ также оказывает губительное влияние на растение. К примеру, резкое снижение концентрации магния может вызвать скорое голодание и остановку роста. Обусловлено это тем, что минеральные вещества, попадая в ткани растения, участвуют в создании клеток и органоидов. При этом минеральные вещества способны оказывать влияние на образование биоколлоидов, отсутствие которых уничтожит растение.

Какие элементы необходимы растению?

  • Азот. Является крайне важным элементом, поскольку его наличие необходимо для всех типов растений. Данное вещество способствует образованию аминокислот и белков. А при распаде азот образует аммиачные соединения, которые используются растениями в качестве азотного питания. При недостатке подобного элемента у растений начинается голодание, которое сопровождается замедлением роста и образованием мелких листьев. При этом побеги растения теряют свою форму, а нижние ярусы перестают развиваться. Первыми признаками азотного голодания является потемнение листвы, обусловленное замедленными процессами фотосинтеза. В дальнейшем проблемы увеличиваются, и отражается это в разрушении структуры листьев с их последующим опаданием.


  • Фосфор – в естественных условиях может встречаться в минеральной и органической формах. Все зависит от качественного состава почвы, а именно: если почва обладает повышенной кислотностью, там будет находиться повышенное количество минеральной формы фосфора. Обусловлено это все химической структурой и взаимодействием между веществами на молекулярном уровне. Естественно, на таких грунтах тип питания растения несколько изменится и перейдет в другую форму. Но признаки фосфорного голодания останутся такими же. В первую очередь, это пожелтение листьев и замедление почкообразования. Также явным признаком голодания может стать увядание цветов, они попросту не будут получать необходимого количества минералов.
  • Магний. Элемент, отвечающий за прочность растительных тканей. При его недостатке качество листвы резко упадет. Также следует указать, что магний воздействует не только на растение, но и на почву. Так, он с легкостью избавит почву от переизбытка извести и создаст нейтральные условия в почве, благодаря чему корневище будет усваивать большее количество элементов.
  • Калий. Этот элемент играет важную роль в развитии растений. Во-первых, он участвует в большинстве физиологических процессов, необходимых для жизни растения. А во-вторых, его наличие необходимо для хорошего развития корневища, от размеров и качеств которого будет зависеть дальнейшее минеральное питание растений. Еще калий обладает профилактическими свойствами и придает растениям устойчивость к низким температурам. Калий является основным элементом минерального питания растений. Недостаток данного элемента можно наблюдать по реакции верхушек растений: молодые листья получают желтый окрас и практически не развиваются.


  • Кальций представлен для растений в виде различных солей. Это могут быть фосфаты и карбонаты. Основное воздействие кальций оказывает именно на почву. При нормальной концентрации кальция почва раскисляется и становится оптимальной для развития и последующего питания растений. Естественно, растение потребляет кальций, но это количество настолько мало, что практически не учитывается.
  • Железо – используется растением для образования хлорофиллов. Недостаток железа проявляется быстрым старением листьев. Наступает фаза хлороза, и листва опадает. Бор и кобальт наравне с железом обладают функциями для образования хлоропластов и хлорофиллов.
  • Цинк – нужен растению для оптимального дыхания. Он обладает свойствами, которые позволяют клеткам растения впитывать СО2 и в дальнейшем перерабатывать его в кислород.

Как разделить питание растений?

В первую очередь, следует рассказать про почвенное питание растений. А поскольку большинство минералов находится под землей, именно такой тип питания отвечает за насыщение растения минеральными веществами. Питание происходит за счет корневой системы (это орган, способный выкачивать и перерабатывать вещества в форму, подходящую для питания и усвоения их растениями).

95 % сухой массы растительных тканей составляют четыре элемента - С, О, Н, N , называемые органогенами .

5 % прихо­дится на зольные вещества - минеральные элементы, содержание которых обычно определяют в тканях после сжигания органического вещества растений.

Со­держание золы зависит от вида и органа растений, условий вы­ращивания. В семенах содержание золы составляет в среднем 3 % , в корнях и стеблях – 4…5 , в листьях – 5…15 % . Меньше всего золы в мертвых клетках древесины (около 1 %). Как пра­вило, чем богаче почва и чем суше климат, тем больше в расте­ниях содержание зольных элементов.

Растения способны поглощать из окружающей среды практи­чески все элементы периодической системы Д. И. Менделеева. Причем многие элементы накаплива­ются в растениях в значительных количествах и включаются в природный круговорот веществ. Однако для нормальной жизнедеятельности самого растительного организма требуется лишь небольшая группа эле­ментов, называемых питательными .

Питательными веществами называются вещества, необходимые для жизни организма.

Элемент считается необходимым , если его отсутствие не позволяет растению завершить свой жиз­ненный цикл ; недостаток элемента вызывает специфические на­рушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредствен­но участвует в процессах превращения веществ и энергии , а не действует на растение косвенно.

Необходимость элементов можно установить только при вы­ращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллиро­ванную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготов­ления и хранения растворов.

Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам относятся 19 элементов: С (45 %), Н (6,5 %) и О 2 (42 %) (усвояемых в процессе воздушного питания) + 7 (N, P, K, S, Ca, Mg, Fe) + Mn, Cu, Zn, Mo, B, Cl, Na, Si, Co.

Все элементы, в зависимости от их содержания в растениях делят на 3 группы: макроэлементы, микроэлементы и ультромикроэлементы.

Макроэлементы содержатся в количестве от целых до десятых и сотых долей процента: N , Р, S , К, Са, Mg ; микроэлементы - от тысячных до 100-тысячных долей процента: Fe , М n , С u , Zn , В, Мо .

Со необходим бобо­вым для симбиотической фиксации N, Na по­глощается в относительно высоких количествах свеклой и необ­ходим растениям, приспособленным к засоленным почвам), Si в больших количествах встречается в соломе злаков и необходим для риса ,Cl накапливают мхи, хвощи, папоротники.

    1. Макроэлементы, их усвояемые соединения, роль и функциональные нарушения при недостатке в растении

Значение элемента определяется ролью, которую он выполняет самостоятельно или в составе других органических соединений. Не всегда высокое содержание свидетельствует о необходимости того или иного элемента.

Азот (около 1,5 % СМ) вхо­дит в состав белков, нуклеиновых кислот, липоидных компонен­тов мембран, фотосинтетических пигментов, витаминов и др угих жизненно важных соединений.

Основными усвояемыми формами N являются ионы нитрата (NO 3- ) и аммония (NH 4+ ) . Высшие растения способны также усваивать нитриты и водорастворимые N-содержащие органические со­единения (аминокислоты, амиды, полипептиды и др .). В ес­тественных условиях эти соединения редко бывают источником питания, поскольку их содержание в почве, как правило, очень мало.

Недостаток N тормозит рост растений. Одновременно снижается ветвле­ние корней , но соотношение массы корней и надземной системы может увеличиваться . Это приводит к уменьшению площади фотосинтетического аппарата и сокращению периода вегетатив­ного роста (раннее созревание) , что снижает фотосинтетический потенциал и продук­тивность посева .

Недостаток N а вызывает также серьезные нарушения энер­гетического обмена (хуже используют световую энер­гию, так как снижается интенсивность фотосинтеза, раньше на­ступает световое насыщение, а компенсационная точка находит­ся при более высокой интенсивности света, интенсивность дыхания может возрастать , но уменьшаются сопряженность окисления с фосфорилированием ), возрастают энергетические затраты на поддержание структуры цитоплазмы ).

N-ое голодание влияет на водный режим (снижает водоудерживающую способ­ность растительных тканей, так как уменьшает количество кол­лоидносвязанной воды, снижается возможность вне­устьичного регулирования транспирации и возрастает водоотдача ). Поэтому низкий уровень N-ого питания не только снижает урожай, но и уменьшает эффективность использования воды посевом.

Внешние признаки голодания : Бледно-зеленая, желтая окраска листьев, оранжевые, красные тона, высыхание, некрозы, низкорослость и слабое кущение, появляются признаки ксероморфизма (мелколистность) .

Фосфор (0,2-1,2 % СМ). P поглощается и функциони­рует в растении только в окисленной форме - в виде остатков ортофосфорной кислоты (PO 4 3-).

P - обязательный компонент таких важней­ших соединений, как НК, фосфопротеидов, фосфолипидов, P- ных эфиров сахаров, нуклеотидов, прини­мающих участие в энергетическом обмене (АТФ, НАД, ФАД и др.), витаминов.

P- ный обмен сводится к фосфорилированию и трансфосфорилированию. Фосфорилирование - это присоединение остатка P- ной кислоты к какому-либо органическому соединению с образова­нием эфирной связи, например фосфорилирование глюкозы, фруктозо-6-фосфата в гликолизе. Трансфосфорилирование - это процесс, при котором остаток P- ной кислоты переносится от одного органического вещества на другое. Значение образующихся при этом P- органических соедине­ний огромно.

Недостаток P вызывает серьез­ные нарушения синтетических процессов , функционирования мембран , энергетического обмена.

Внешние признаки голодания : сине-зеленая окраска с пурпурным или бронзовым оттенком (задержка синтеза белков и накопление сахаров), мелкие узкие листья, корневая система буреет , слабо развивается, корневые волоски отмирают . Приостанавливается рост растений , задерживается со­зревание плодов.

Сера (0,2-1,0 % СМ). Поступает в растение в окислен­ной форме, в виде аниона SO 4 2- . В органические соединения S входит только в восстанов­ленной форме - в составе сульфгидрильных групп (-SH) и ди­сульфидных связей (-S-S-). Восстановление сульфата происходит преимущественно в листьях . Восстановленная S может вновь переходить в окисленную функционально неактивную форму. В молодых листьях S в основном находится в составе органических соединений, а в старых накапливается в вакуолях в виде сульфата.

S является компонентом важнейших биологических соединений - коэнзима А и витаминов (тиамина, ли­поевой кислоты, биотина), играющих важную роль в дыхании и липидном обмене .

Кофермент А (S образует макроэргическую связь) поставляет ацетильный остаток (СН 3 СО- S - KoA ) в цикл Кребса или для биосинтеза жирных кис­лот, сукцинильный остаток для биосинтеза порфиринов. Липоевая кислота и тиамин входят в состав липотиаминди­фосфата (ЛТДФ), участвующего в окислительном декарбоксили­ровании ПВК и -кетоглютаровой.

Многие виды растений в малых количествах содержат летучие соединения S (сульфоксиды входят в состав фи­тонцидов лука и чеснока). Представители семейства Крестоцвет­ные синтезируют серосодержащие горчичные масла .

S принимает активное участие в многочисленных реакциях обмена веществ. Почти все белки содержат серосодержащие аминокислоты - метионин, цистеин, цистин . Функции S в белках:

    участие HS-групп и -S-S-связей в стаби­лизации трехмерной структуры белков и

    образование связей с коферментами и простетическими группами.

    Сочетание метиль­ной и HS-группы обусловливает широкое участие метионина в образовании АЦ ферментов.

    С этой аминокислоты начинается синтез всех полипептидных цепей.

Другая важнейшая функция S в растительном организме, основанная на обратимом переходе 2(-SH) = -HS-SH- ­состоит в поддержании определенного уровня окислительно­восстановительного потенциала в клетке. К серосодержащим окислительно-восстановительным системам клетки относятся система цистеин = цистин и система глу­татиона (является трипептидом - состоит из глутаминовой, цистина или цистеина и глицина). Его окислительно-восстановительные превращения связаны с переходом -S-S-групп цистина в HS-группы цис­теина.

Недостаток S тормозит белковый синтез, снижает фотосинтез и скорость роста растений , особенно надземной части.

Внешние признаки голодания : побеление, пожелтение листьев (молодых).

Калий (около 1 % СМ). В растительных тканях его гораздо боль­ше, чем других катионов. Содержание K в растениях в 100­-1000 раз превосходит его уровень во внешней среде . K поступает и в растение в виде катиона К + .

K не входит ни в одно органическое соединение . В клетках он присутствует в основном в ионной форме и легко подвижен . В наибольшем количестве K сосредоточен в молодых растущих тканях , характеризую­щихся высоким уровнем обмена веществ.

Функции :

    участие в регуляции вязкости цитоплазмы , в повышении гидратации ее коллоидов и водоудерживающей спо­собности ,

    служит основным противоионом для нейтрали­зации отрицательных зарядов неорганических и органических анионов,

    создает ионную асиммет­рию и разность электрических потенциалов на мембране, т. е. обеспечивает генерацию биотоков в растении

    является активатором многих ферментов , он необходим для включения фосфата в органические соединения, синтеза белков, полисахаридов и рибофлавина - компонента флавиновых дегидрогеназ. K особенно необходим для молодых , активно растущих органов и тканей.

    принимает активное участие в осморегуляции, (открывании и закрывании устьиц) .

    активирует транспорт углеводов в растении. Установлено, что высокий уровень сахара в зре­лых ягодах винограда коррелирует с накоплением значительных количеств K и органических кислот в соке незрелых ягод и с последующим выходом K при созревании. Под влиянием K увеличивается накопление крахмала в клубнях картофеля , сахарозы в сахарной свекле , моносахаридов в плодах и овощах , целлюлозы, гемицеллюлоз и пектиновых веществ в клеточных стенках растений.

    В результате повышается устойчивость злаков к полеганию, к грибным и бактериальным заболеваниям .

При дефиците K снижается функционирование камбия , нарушаются процессы деления и растяжения клеток , развитие сосудистых тканей , уменьшается толщина клеточной стенки, эпидермиса . В результате укорачива­ния междоузлий могут образоваться розеточные формы расте­ний . Снижается продуктивность фотосинтеза (за счет уменьшения оттока ассимилятов из листьев).

Кальций (0,2 % СМ). Поступает в растение в виде иона Са 2+ . На­капливается в старых органах и тканях. При снижении физиоло­гической активности клеток Ca из цитоплазмы перемеща­ется в вакуоль и откладывается в виде нерастворимых соедине­ний щавелевой, лимонной и др. кислот. Это значительно снижает подвижность Ca в растении.

Большое количество Ca связано с пектиновыми веществами клеточной стенки и срединной пластинки.

Роль ионов Са :

    стабилизация структуры мембран , регуляция ионных потоков и участие в биоэлектри­ческих явлениях . Са много содержится в митохондриях, хлоропластах и ядрах , а также в комплексах с био­полимерами пограничных мембран клетки.

    участие в катионообменных процессах в корне (наряду с протоном водорода принимает активное участие в пер­вичных механизмах поступления ионов в клетки корня).

    способст­вует устранению токсичности избыточных концентраций ионов NH 4+ , Al , Mn , Fe , повышает устойчивость к засолению, (ограничивает поступление других ионов),

    снижает кислотность почвы .

    участие в процессах движения цитоплазмы (структур­ная перестройка актомиозиноподобных белков), обратимых изменениях ее вязкости ,

    определяет пространственную организацию цитоплазматических ферментных систем (например, ферментов гликолиза),

    активировании ряда ферментов (дегидрогеназ, амилаз, фосфотаз, киназ, липаз) - определяет четвертичную структуру белка, участвует в создании мостиков в фермент-субстратных комплексах, влияет на состояние аллостерических центров).

    определяет структуру цитоскелета - регулируют процессы сборки-разборки микротрубочек , секреции компонентов клеточной стенки с участием везикул Гольджи.

    Комплекс белка с Ca активирует многие ферментные системы : протеинкиназы, транспортную Са-АТФ-азу, АТФ-азу актомиозина .

Регуляторное действие Са на многие стороны метаболизма связано с функционированием специфи­ческого белка - кальмодулина . Это кислый (ИЭТ 3,0-4,3) термостабильный низкомолекулярный белок. С участием кальмодулина регулирует­ся концентрация внутриклеточного Ca . Комплекс Са-каль­модулин контролирует сборку микротрубочек веретена , образова­ние цитоскелета клетки и формирование клеточной стенки.

При недостатке Ca (на кислых, засоленных почвах и торфяниках) в первую очередь страдают меристе­матические ткани и корневая система. У делящихся клеток не образуются клеточные стенки , в результате возникают много­ядерные клетки . Прекращается образование боковых корней и корневых волосков . Недостаток Ca вызывает также набуха­ние пектиновых веществ , что приводит к ослизнению клеточных стенок и загниванию растительных тканей.

Внешние признаки голодания : корни, листья, участки стебля загнивают и отмирают, кончики и края листьев вначале белеют, затем чернеют, искривляются и скручиваются.

Магний (около 0,2 % СМ). Особенно много Mg в молодых растущих частях растения, а также в генеративных органах и запасающих тканях.

Поступает в растение в виде иона Mg 2+ и, в отличие от Ca, обладает сравнительно высокой подвижностью . Легкая подвижность Mg 2+ объясняется тем, что почти 70 % этого катиона в растениях связано с анионами орга­нических и неорганических кислот .

Роль Mg :

    входит в состав хлорофилла (около 10-12 % Mg ),

    является активатором ряда ферментных систем (РДФ-карбоксилазы, фосфокиназ, АТФ-аз, енолаз, ферментов цикла Кребса, пентозофосфатного пути, спиртового и молочнокислого брожения), ДНК- и РНК-полимеразы.

    активирует процессы транспорта элек­тронов при фотофосфорилировании.

    необходим для фор­мирования рибосом и полисом, для активации аминокислот и синтеза белков.

    участ­вует в образовании определенной пространственной структуры НК.

    усиливает синтез эфирных масел, каучуков.

    предот­вращает окисление аскорбиновой кислотой (образуя комплексное соединение с ней).

Недостаток Mg приводит к наруше­нию P- ного , белкового и углеводного обменов. При магни­евом голодании нарушается формирование пластид : граны сли­паются , разрываются ламеллы стремы .

Внешние признаки голодания : листья по краям имеют желтый, оранжевый, красный цвет (мраморная окраска). Впоследствии развиваются хлороз и некроз лис­тьев. Характерным является полосатость листьев у злаков (хлороз между жилками, которые остаются зелеными).

Железо (0,08 %) . Посту­пает в растение в виде Fe 3+ .

Железо входит в состав ЭТЦ фотосинтетического и окислительного фосфорилирования (цитохромов, ферредокси­на), является компонентом ряда оксидаз (цитохромоксидазы, ка­талазы, пероксидазы). Кроме того, железо является составной частью ферментов, катализирующих синтез предшественников хлорофилла (амино­левулиновой кислоты и протопорфиринов).

Растения могут включать Fe в запасные вещества . Например, в пластидах содержится ­белок ферритин, имеющий железо(до 23 % СМ) в негеминной форме.

Роль Fe связана с его способностью к обратимым окислительно-восста­новительным превращениям (Fe 3+ - Fe 2+) и участию в транспорте электронов.

Поэтому недостаток Fe вызывает глубокий хлороз в развивающихся листьях (могут быть совершенно белыми), и тормозит важней­шие процессы энергообмена - фотосинтез и дыхание .

Кремний () содержится в основном в клеточных стенках.

Его недостаток может задержать рост злаков (кукуруза, овес, ячмень) и двудольных (огурцы, томаты, табак). Недостаток в репродуктивный период вызывает уменьшение количества семян. При недостатке Si нарушается ультраструктура клеточных органелл.

Алюминий () особенно важен для гидрофитов, его накапливают папаратники и чай.

Недостаток вызывает хлороз.

Избыток токсичен (связывает P и приводит к P- ному голоданию).

Любое растение - это настоящий живой организм, и для того, чтобы его развитие шло полноценно, требуются жизненно важные условия: свет, воздух, влага и питание.

Все они равнозначны и недостаток одного пагубно сказывается на общем состоянии. В этой статье мы поговорим о такой важной составляющей в жизни растений, как минеральное питание.

Особенности процесса питания

Являющаяся основным источником энергии, без которой угасают все жизненные процессы, пища необходима каждому организму. Следовательно, питание - не просто важное, а одно из основных условий для качественного роста растения, и они добывают пищу, пуская в ход все надземные части и корневую систему. Посредством корней они извлекают из грунта воду и нужные минеральные соли, пополняющие необходимый запас веществ, осуществляя почвенное или минеральное питание растений.

Существенная роль в этом процессе отведена корневым волоскам, поэтому подобное питание носит еще одно название - корневое. С помощью этих нитевидных волосков растение вытягивает из земли водные растворы самых разных химических элементов.

Работают они по принципу насоса и располагаются на корне в зоне всасывания. Растворы солей, поступающие в ткани волоска, перемещаются в проводящие клетки — трахеиды и сосуды. По ним вещества попадают в проводные далее по стеблям распространяются по всем надземным частям.

Элементы минерального питания растений

Итак, пищей для представителей растительного царства служат вещества, получаемые из почвы. Питание растений минеральное или почвенное - это единство разных процессов: от поглощения и продвижения до усвоения элементов, находящихся в почве в виде минеральных солей.

Исследования золы, оставшейся от растений, показали, как много в ней остается химических элементов и количество их в разных частях и разных представителях флоры не одинаково. Это является свидетельством того, что химические элементы поглощаются и скапливаются в растениях. Подобные опыты привели к следующим выводам: жизненно важными признаны элементы, находящиеся во всех растениях - фосфор, кальций, калий, сера, железо, магний, а также микроэлементы, представленные цинком, медью, бором, марганцем и др.

Несмотря на разное количество этих веществ, имеются они в любом растении, и замена одним элементом другого невозможна ни при каких условиях. Уровень наличия минеральных веществ в почве очень важен, поскольку от этого зависит урожайность сельскохозяйственных культур и декоративность цветущих. В разных почвах различна и степень насыщенности почвы нужными веществами. К примеру, в умеренных широтах России отмечается существенная нехватка азота и фосфора, иногда калия, поэтому обязательным является внесение удобрений - азотных и калийно-фосфорных. Каждому элементу отведена своя роль в жизни растительного организма.

Правильное питание растений (минеральное) стимулирует качественное развитие, которое осуществляется лишь тогда, когда все необходимые вещества в нужном количестве имеются в почве. Если наблюдается нехватка или излишек некоторых из них, растения реагируют изменением окраски листвы. Поэтому одним из важных условий агротехники сельскохозяйственных культур являются разработанные нормы внесения подкормок и удобрений. Отметим, что многие растения лучше недокормить, чем перекормить. Например, для всех ягодных садовых культур и их дикорастущих форм губителен именно избыток питания. Узнаем, как разные вещества взаимодействуют с и на что каждое из них влияет.

Азот

Один из самых необходимых для роста растения элементов - азот. Он присутствует в составе белков и аминокислот. Дефицит азота проявляется в изменении окраски листьев: на первых порах лист мельчает и краснеет. Существенная нехватка вызывает нездоровый желто-зеленый цвет или бронзово-красный налет. Первыми поражаются более старые листья снизу на побегах, затем по всему стеблю. При продолжающемся дефиците прекращается рост ветвей и завязывание плодов.

Излишнее соединениями ведет к повышенному содержанию азота в почве. При этом наблюдают бурный рост побегов и интенсивное наращивание зеленой массы, что не дает возможности растению заложить цветковые почки. В результате продуктивность растения заметно снижается. Вот почему так важно сбалансированное минеральное почвенное питание растений.

Фосфор

Не менее важен в растительной жизнедеятельности и этот элемент. Он является составляющей частью нуклеиновых кислот, соединение которых с белками образуют нуклеопротеиды, входящие в состав ядра клетки. Фосфор концентрируется в тканях растений, их цветках и семенах. Во многом способность деревьев противостоять природным катаклизмам зависит от наличия фосфора. Он отвечает за морозоустойчивость и комфортное проведение зимовки. Дефицит элемента проявляется в замедлении деления клеток, прекращении роста растения и развития корневой системы, листва приобретает лилово-красный оттенок. Усугубление ситуации грозит растению гибелью.

Калий

В минеральные вещества для питания растений входит калий. Он необходим в наибольших количествах, поскольку стимулирует процесс всасывания, биосинтеза и транспортировки жизненно важных элементов во все части растения.

Нормальное обеспечение калием повышает сопротивляемость растительного организма, стимулирует защитные механизмы, засухо- и холодоустойчивость. Цветение и плодообразование с достаточным обеспечением калием более эффективно: цветы и плоды значительно крупнее и ярче окрашены.

При нехватке элемента рост существенно замедляется, а сильный дефицит приводит к истончению и ломкости стеблей, изменению окраски листьев на лилово-бронзовую. Затем листья сохнут и разрушаются.

Кальций

Нормальное почвенное питание растений (минеральное) невозможно без кальция, который присутствует практически во всех клетках растительного организма, стабилизируя их функциональность. Особенно значим этот элемент для качественного роста и работы корневой системы. Недостаток кальция сопровождается задержкой роста корней и неэффективным формированием корневой системы. Проявляется недостаток кальция в покраснении кромки верхних листьев на молодых побегах. Усиливающийся дефицит добавит пурпурной окраски на всей площади листа. Если кальций так и не поступит в растение, то листья у побегов текущего года засыхают вместе с верхушками.

Магний

Процесс минерального питания растений при нормальном развитии невозможен без магния. Входя в состав хлорофилла, он является обязательным элементом процесса фотосинтеза.

Активизируя ферменты, принимающие участие в обмене веществ, магний стимулирует закладку ростовых почек, прорастание семян и другую репродуктивную деятельность.

Признаки нехватки магния - появление красноватого оттенка в основании листьев, распространяющегося вдоль центрального проводника и занимающего до двух третей листовой пластины. Сильный дефицит магния приводит к омертвению листа, снижению продуктивности растения и его декоративности.

Железо

Отвечающий за нормальное дыхание растений, этот элемент незаменим в окислительно-восстановительных процессах, поскольку именно он является акцептором молекул кислорода и синтезирует вещества-предшественники хлорофилла. При дефиците железа растение поражает светлеют и истончаются, приобретая желтовато-зеленую, а затем ярко-желтую окраску с темными ржавыми пятнами. Нарушение дыхание провоцирует замедление роста растений, значительное снижение урожайности.

Марганец

Ничуть не преувеличивая значения необходимых микроэлементов, вспомним о том, как реагируют на них растения и почва. Минеральное питание растений дополняется марганцем, обязательным для продуктивного течения процессов фотосинтеза, а также синтеза белков и др. Нехватка марганца проявляется в слабой молодой поросли, а сильный дефицит делает ее нежизнеспособной - листья на стеблях желтеют, верхушки побегов засыхают.

Цинк

Этот микроэлемент - активный участник в процессе образования ауксина и катализатор роста растения. Являясь обязательным компонентом хлоропластов, цинк присутствует при фотохимическом расщеплении воды.

Он необходим при оплодотворении и развитии яйцеклетки. Дефицит цинка становится заметным в конце и во время отдыха - листья приобретают лимонный оттенок.

Медь

Питание растений минеральное или корневое будет неполным без этого микроэлемента. Входящая в состав целого ряда ферментов, медь активизирует такие важные процессы, как дыхание растения, белковый и углеводный обмены. Производные меди - обязательные компоненты фотосинтеза. Недостаток этого элемента проявляется засыханием верхушечных побегов.

Бор

Стимулирующий синтез аминокислот, углеводов и белков, бор присутствует во многих ферментах, регулирующих обмен. Признаком острой нехватки бора является появление пестрых пятен на молодых стеблях и проявляющийся синеватый оттенок листьев у основания побегов. Дальнейший дефицит элемента приводит к разрушению листвы и гибели молодой поросли. Цветение получается слабое и непродуктивное - плоды не завязываются.

Мы перечислили основные химические элементы, необходимые для нормального развития, качественного цветения и плодоношения. Все они, правильно сбалансированные, составляют качественное минеральное питание растений. И значение воды также переоценить сложно, ведь все вещества из почвы поступают в растворенном виде.



Похожие публикации